Refine Your Search

Topic

Search Results

Technical Paper

Reinforcement Learning Based Energy Management of Hybrid Energy Storage Systems in Electric Vehicles

2021-04-06
2021-01-0197
Energy management in electric vehicles plays a significant role in both reducing energy consumption and limiting the rate of battery capacity degradation. It is especially important for systems with multiple energy storage units where optimally arbitrating power demand among the energy storage units is challenging. While many optimal control methods exist for designing a good energy management system, in this work a Reinforcement-Learning (RL) methodology is explored to design an energy management system for an electric vehicle with a Hybrid Energy Storage System (HESS) that included a battery and a supercapacitor. The energy management system is designed to optimally divide the traction power request among a battery and a super-capacitor in real-time; while trying to minimize the overall energy consumption and battery degradation.
Technical Paper

The Algorithmic Research of Multi-operating Mode Energy Management System

2013-04-08
2013-01-0988
The traditional energy management algorithm is mainly based on a single driving cycle, it is obvious that many factors might be often neglected by designer, such as different driving cycles would suit for different control strategies. But they tend to make decisions on the balance of torque distribution and battery power that based on a single driving cycle. Therefore, it is very difficult to achieve the optimal control in each case. In this paper we introduce a new design concept of Multi-operating mode energy management, a mathematical model of the energy management applied to a hybrid vehicle system is presented. Results of simulations using the model with the Multi-operating mode energy management were compared with results of simulations using a model with the single mode energy management, allowing the energy efficiency evaluation of the proposed energy management system.
Technical Paper

The Research on Fuzzy Logic Control Strategy of Synergic Electric System of Hybrid Electric Vehicle

2007-08-05
2007-01-3481
Supercapacitor has the merits of low resistance and long lifecycle ability. When combined with battery, they can alleviate the burthen of battery, increase the battery's working efficiency and prolong its lifecycle. This paper introduces a control architecture based on balancing of SOC and algorithm based on fuzzy logic, Aiming at the two different cycles that have sufficient and insufficient energy that can be recovered from braking unlikely, this paper puts forward the methods of on-line adjusting fuzzy control parameters. Consequently, simulation was performed,and the results validate the effective adapting capacity of the control logic under different driving cycles.
X